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Summary. Demographic analyses of age-structured populations typically rely on life history data for in-
dividuals, or when individual animals are not identified, on information about the numbers of individuals
in each age class through time. While it is usually difficult to determine the age class of a randomly en-
countered individual, it is often the case that the individual can be readily and reliably assigned to one
of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such
cases, the population age structure can be regarded as a latent variable governed by a process prior, and the
data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent
structure and estimating process parameters from summaries of age class information. We present a demo-
graphic analysis for the critically endangered migratory population of whooping cranes (Grus americana),
based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates.
We address the controversial issue of whether management action on the breeding grounds has influenced
recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the
pattern of variation through time in this rate.
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1. Introduction
Age-structured population models form the basis of many
studies of animal populations, and are employed as a tool
to facilitate the conservation and management of a number of
animal species of special interest, such as whales (Breiwick,
Eberhardt, and Braham, 1984), waterfowl (Johnson et al.,
1997), and sea turtles (Crouse et al., 1987). These models are
used to assess population growth rate, minimum viable popu-
lation size, and the effects of harvest or other human-induced
impacts, and to study theoretical questions of relevance to
population and evolutionary biology (Caswell, 2000). Data
used in the analysis of age-structured population models usu-
ally consist of individual life histories, or counts of individuals
within age classes. However, it is not always feasible to col-
lect such data. On the other hand, it is often relatively simple
to identify individuals as belonging to groups that are aggre-
gations of one or more age classes (typically juvenile/adult).
For example, many birds and mammals can be identified as
juveniles based on plumage, coloration, and other physical
characteristics which may be assessed in the field. These
aggregate classes are sometimes used as the basis of age-
structured population models and may be sufficient for
many purposes. Generally, however, a more detailed model
of population age structure and vital rates is desirable
and biologically realistic. To the best of our knowledge,

methods for estimating general age-structured population
models from aggregate age class data have not been
developed.

In this article, we present a framework for estimating age-
structured population models from aggregate age class data,
motivated by data collected on endangered whooping cranes
(Grus americana). The key idea behind our approach is to
employ an age-structured population model to describe the
underlying process that gave rise to the aggregate age-class
data. Raftery, Givens, and Zeh (1995) employ a similar idea
in the analysis of a deterministic population model for bow-
head whales. A similar development can also be found in re-
cent geophysical applications (e.g., Wikle et al., 2001), where
observations of a state variable are available, and where
an underlying process model is constructed from physical
considerations.

2. Whooping Cranes
The whooping crane is one of the rarest and most endan-
gered birds in North America. Currently, there is only one
natural migratory population. This population migrates be-
tween wintering grounds in Aransas National Wildlife Refuge,
Texas, and breeding grounds in Wood Buffalo National Park,
Canada (Kuyt, 1995, 1996). There are also several captive
populations, established by collecting fertile eggs from the
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wild population and rearing them in captivity. In addition,
a nonmigratory population has been established by releasing
captive-bred individuals in Florida (Nesbitt et al., 2001), and
attempts at establishing an eastern migratory population are
underway (Horwich, 2001).

Although the Aransas/Wood Buffalo migratory population
was down to as few as 16 individuals in 1941, the most recent
census of this population counted a total of 176 individuals,
of which 15 were juveniles (i.e., less than one year old) and
161 were adults or subadults (Tom Stehn, personal commu-
nication). This census has occurred annually since 1938. It
provides a total count of the individuals in the population
each year when the birds arrive on their wintering grounds
in Texas (Binkley and Miller, 1980, 1983; Boyce and Miller,
1985). Juveniles (those with brown in their plumage) are tal-
lied separately from adults and subadults (those with white
plumage), but since the age of white birds cannot be assessed,
there is no direct information about population age structure
through time. Our primary goal in this article is to estimate
the parameters of an age-structured population model from
these age-class summaries.

Management decisions concerning this population are crit-
ical to the survival of the species. One such decision concerns
whether to manipulate eggs in the nests of the migratory pop-
ulation. Prior to 1967, no egg collection was performed, but
after that year, fertile eggs have been collected from some
nests for the establishment of the captive populations (Kuyt,
1995, 1996). Occasionally, a single egg has been taken from
nests with 2 fertile eggs, and substituted for an infertile egg
in a nest with no fertile eggs. Because whooping cranes only
rarely raise 2 young to fledging, it was assumed that egg ma-
nipulation would have little or no effect on the migratory pop-
ulation (Lewis, 2001). Currently, there is some debate about
the effect of the manipulation of eggs on the migratory popu-
lation (Cannon, Johns, and Stehn, 2001; Ellis and Gee, 2001;
Lewis, 2001) and concern that this action might be harm-
ful to the wild population. Cannon et al. (2001) performed
a two-sample t-test on the annual percent recruitment, con-
cluding that mean recruitment was significantly lower in years
in which egg collection occurred. Ellis and Gee (2001) argued
that egg collection was not harmful, and may actually be ben-
eficial to the population. These attempts to address the effect
of egg collection have not taken into account the age structure
of the population.

Binkley and Miller (1980) modeled age-specific survival
with regression of numbers of white birds (Wi) on previous
counts of brown birds (Bi), using the relation

E (Wi) =

T∑
x=1

S(x)Bi−x,

where S(x) is the probability that an individual lives at least
x years. After specifying a maximum lifetime T and a para-
metric form for the survival function, they discard the first
T counts of white birds, and fit the model by least squares.
To attain a linear model, they worked with polynomial func-
tions of survival, choosing a quadratic as their best approx-
imation. Questions of the appropriateness of a polynomial
survival model aside, the absence of an explicit description
of the covariance structure among and between response vari-

ables and regressors, and the necessity of discarding data limit
the appeal of their analysis.

Our primary goal in this paper is to perform a demographic
analysis of the Aransas/Wood Buffalo whooping crane data,
with explicit modeling of the latent age structure of the popu-
lation. A secondary goal is to evaluate the evidence these data
provide regarding the effects of egg collection on recruitment,
i.e., on the number of brown birds in the following year.

3. Model
The models we consider include demographic parameters for
7 distinct age classes. The first 6 age classes correspond to the
first 6 years of life, the seventh consists of birds in their sev-
enth year or older. Most of the age class 7 birds are breeders
(roughly 90%), as are a few of the age class 6 birds (roughly
30%); breeding is uncommon and rarely successful among
younger birds (George Gee, personal communication). The
median lifespan for whooping cranes has been variously esti-
mated at 6–7 years (Kuyt and Goosen, 1987) and 8–9 years
(Binkley and Miller, 1980); Binkley and Miller assumed a
maximum age of 23 years, though we note that a bird in
captivity at the Patuxent Wildlife Research Center recently
died at age 38.

The number of age class j birds in year i is Yij . We denote
the age distribution in year i by Yi = (Yi1, Yi2, . . . , Yi6, Yi7)

′
,

and refer to the n × 7 matrix Y = (Y1,Y2, . . . ,Yn)
′
as the

population history. Most of the numbers Yij are unknown; our
analysis is based on data

Bi = Yi1 = number of brown birds in year i,

and

Wi =

7∑
j=2

Yij = number of white birds in year i,

i = 1, 2, . . . , n = 64 (1938–2001), summarized by B =
(B1, B2, . . . , Bn)

′
and W = (W1,W2, . . . ,Wn)

′
. Data for 1938

to 1999 come from Cannon et al. (2001), the remaining years
of data and a correction to the 1996 data were provided by
the U.S. Fish and Wildlife Service (Tom Stehn, personal com-
munication). These data are presented in Table 1.

Changes in the age distribution through time are naturally
modeled by a first order Markov chain, as indicated in Fig-
ure 1. Age class 1 individuals in year i have annual survival
probability ϕi1; those that survive make up age class 2, in
year i + 1. We model this transition by specifying that given
Yi1, Y(i+1)2 is a binomial random variable, with index Yi1 and
success parameter ϕi1. Similarly, we model Y(i+1)(j+1) as bino-
mial, with index Yij and success parameter ϕij , for j = 2, 3,
4, 5. Age class 7 consists of survivors from the previous year’s
age classes 6 and 7, hence Y(i+1)7 is modeled as a binomial
random variable, with index Yi6 + Yi7 and success parameter
ϕi6.

We model the recruitment by assuming that Y(i+1)1 is a
Poisson random variable with mean λiYi7. We refer to the
parameter λi as the per-breeder recruitment rate for year i,
noting that the designation is only approximately correct: Yi7

is an index to the number of breeders in year i, rather than
the exact number. Heterogeneity due to this indexing is a
component of the temporal variation of λi.



780 Biometrics, December 2003

Table 1
Numbers of brown (B) and white (W) birds in the wintering population of whooping cranes at Aransas.

Egg-collection years are in bold.

Year B W Year B W Year B W Year B W

1938 4 14 1954 0 21 1970 6 51 1986 21 89
1939 7 15 1955 8 20 1971 5 54 1987 25 109
1940 5 21 1956 2 22 1972 5 46 1988 19 119
1941 2 14 1957 4 22 1973 2 47 1989 20 126
1942 4 15 1958 9 23 1974 2 47 1990 13 133
1943 5 16 1959 2 31 1975 8 49 1991 8 124
1944 3 15 1960 6 30 1976 12 57 1992 15 121
1945 4 18 1961 5 34 1977 10 62 1993 16 127
1946 3 22 1962 0 32 1978 7 68 1994 8 125
1947 6 25 1963 7 26 1979 6 70 1995 28 130
1948 3 27 1964 10 32 1980 6 72 1996 16 144
1949 4 30 1965 8 36 1981 2 71 1997 30 152
1950 5 26 1966 5 38 1982 6 67 1998 18 165
1951 5 20 1967 9 39 1983 7 68 1999 17 171
1952 2 19 1968 6 44 1984 15 71 2000 9 171
1953 3 21 1969 8 48 1985 16 81 2001 15 161
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Yi+1,5

φi2

Yi+1,6
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Yi,7 Yi+1,7
}

λ i

Yi,1 Yi+1,1
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φi5
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Figure 1. Graphical depiction of whooping crane popula-
tion model. Rectangles represent age classes j = 1, 2, . . . , 7
for years i and i + 1, with arrows indicating stochastic rela-
tions in numbers of individuals. The number of age class 1
individuals in year i + 1 is a Poisson random variable with
mean λiYi7. For j = 1, 2, . . . , 5, the numbers of age class j + 1
individuals in year i + 1 are binomial random variables, with
rate ϕj and index Yij . Individuals in age classes 6 and 7 have
a common survival rate ϕ6.

4. Analysis
Since the data (B,W) are a time series, it is natural to conduct
analysis having conditioned on the first year’s data. Let [C |D]
denote the conditional probability of C given D. It would be
reasonable to base inference on a likelihood proportional to
[B,W |B1,W1], which could be obtained by integrating Y
out of the joint distribution [Y ,B,W |B1,W1]. The first step,
then, is to describe [Y ,B,W |B1,W1].

We begin by noting that the conditional distribution of the
latent structure Y given the numbers of brown and white
birds in year 1 can be written as

[Y |B1,W1] = [Y2,Y3, . . . ,Yn |Y1][Y 1 |B1,W1].

Since the data are a function of Y, g(Y ) = (B, W ), the joint
distribution of latent and observed quantities is

[Y ,B,W |B1,W1]

= [Y2,Y3, . . . ,Yn |Y1][Y1 |B1,W1]I(g(Y ) = (B,W )); (1)

the final term on the right hand side of (1) is simply a range-
restriction, expressed using an indicator function. Specifically,
we may write

I (g(Y ) = (B,W ))=

n∏
i=1

I

(
Wi =

7∑
j=2

Yij

)
I (Bi = Yi1) . (2)

Since {Y i} is modeled as a first-order Markov chain, the first
term on the right hand side of (1) can be written as

[Y2,Y3, . . . ,Yn |Y1] =

n−1∏
i=1

[Yi+1 |Yi] ; (3)

further, since we assume that transitions among age classes
between years i and i + 1 are independent then, given Yi, (3)
can be expressed as

[Y2,Y3, . . . ,Yn |Y1] =

n−1∏
i=1

7∏
j=1

[
Y(i+1)j |Yi

]

=

n−1∏
i=1

Pois
(
Y(i+1)1;λiYi7

){ 5∏
j=1

Bin
(
Y(i+1)(j+1);Yij , ϕij

)}

×Bin
(
Y(i+1)7;Yi6 + Yi7, ϕi6

)
, (4)

where Pois(x;µ) = exp(−µ)µx/x! and

Bin(x;n, p) =

(
n
x

)
px(1 − p)n−x.

The analytical task of integrating Y2,Y3, . . . ,Yn out of
(1), so as to obtain a likelihood for parameters Y1, ϕij ’s and
λi’s based on the data (B,W ), is prohibitively difficult. In-
deed, there may be interest in predicting the unobserved age



Demographic Analysis from Summaries of an Age-Structured Population 781

distribution Y i, and elaborations of the model might require
that the latent structure be retained. Our approach, there-
fore, will be to carry out Bayesian analysis with the latent
structure retained, and with diffuse prior distributions on pa-
rameters.

The model as described is overparameterized. We thus im-
pose the constraint

logit(ϕij) = αi + βj , (5)

where year effects αi are sampled from a mean-zero normal
distribution with precision τϕ, and age effects βj are sampled
from mean-zero normal distributions with precision parame-
ter τβ = 0.40. Discussion of this choice is deferred, except to
note that the prior is sufficiently diffuse to have little effect
on inference regarding the βj ’s. We model the recruitment
parameters as

ln(λi) = ae(i) + b(i− 32) + εi, (6)

where εi are independent mean-zero normal random variables
with precision τλ; subscript e(i) is an indicator of whether year
i was an egg-collection year.

Letting θ = (ϕij , λi; i = 1, 2, . . . , 63, j = 1, 2, . . . , 6)′ and
ψ = (a0, a1, b, τϕ, τλ)′, we have specified [θ |ψ]; the stan-
dard noninformative prior [ψ] ∝ (1/τλ)(1/τϕ) completes the
prior specification for the demographic parameters. We
assign a uniform prior to the unknown components of
Y 1, setting [Y 1 |B1,W1] ∝ c to complete the model spec-
ification. We thus base our inference on the posterior
distribution

[Y ,θ |B,W ] ∝ [Y ,B,W |B1,W1,θ,ψ][θ |ψ][ψ]. (7)

We approximate features of the posterior distribution
through Gibbs sampling, that is, by cyclical sampling from
the full conditional distributions [Y | ·] = [Y |B,W ,θ,ψ],
[θ | ·] = [θ |Y ,B,W ,ψ] and [ψ | ·] = [ψ |Y ,B,W ,θ]; here
and throughout, we use notation [A | ·] to denote the full con-
ditional distribution of A.

5. Gibbs Sampling
5.1 Gibbs Sampling of Demographic Parameters
We used the Metropolis-Hastings algorithm for sampling
the full conditionals of αi, βj , a0, a1, and b; candidate val-
ues were generated by adding normally distributed noise
to current values. The standard deviations of the candi-
date generating distributions were selected to yield accep-
tance rates of 30–40%. We directly sampled the full condi-
tional distributions of τϕ and τλ, which are in the gamma
family.

5.2 Gibbs Sampling of the Population History
Sampling [Y | ·] is the most challenging aspect of the analysis.
For i = 2, 3, . . . , n – 1, the full conditional distribution of Yi

involves two terms from (4) and a term from (2). Thus, [Yi | ·]
is proportional to

Pois
(
Y(i+1)1;λiYi7

){ 5∏
j=1

Bin
(
Y(i+1)(j+1);Yij , ϕij

)}

×Bin
(
Y(i+1)7;Yi6 + Yi7, ϕi6

)
×Pois

(
Yi1;λiY(i−1)7

){ 5∏
j=1

Bin
(
Yi(j+1);Y(i−1)j , ϕ(i−1)j

)}

×Bin
(
Yi7;Y(i−1)6 + Y(i−1)7, ϕ(i−1)6

)
× I

(
7∑

j=2

Yij = Wi

)
I (Yi1 = Bi) . (8)

We used the Metropolis-Hastings algorithm to sample the full
conditionals of rows Yi of the n × 7 matrix Y. Our candidate-
generating distribution was functionally independent of the
current value of Yi, subject to the constraints imposed by the
data, so that the probability of accepting a candidate value
y∗

i to replace the current value yi was simply

p
(
Y ∗
i ;Yi

)
= min

(
[Yi = y∗

i | ·]
[Yi = yi | ·]

, 1

)
. (9)

The form of the full conditional (8) imposes certain con-
straints on acceptable candidate values y∗

i. In addition to the
explicit constraints imposed by the indicator functions, there
are implicit constraints imposed by the ranges of the binomial
distributions. Age classes j = 2, 3, . . . , 6 cannot have more in-
dividuals than were in age class j – 1 in year i – 1, nor can
age classes j = 2, 3, 4, and 5 have fewer individuals than are
to be in age class j + 1 in year i + 1. Any such candidate
values would be immediately rejected as having full condi-
tional probability of zero. In the interest of efficient sampling,
it is important that candidates be chosen subject to these
constraints. The process is illustrated by an example in the
Appendix.

6. Alternative Models
We considered a number of restricted versions of the model,
which we designated by 4-letter sequences, such as CABA.
The first letter designates restrictions on the mean structure
for the recruitment parameters:

A) a0 
= a1, b = 0, (egg collection effect, but no temporal
trend),

B) a0 = a1, b = 0, (no egg collection effect and no temporal
trend),

C) a0 = a1, b 
= 0, (no egg collection effect, but temporal
trend),

D) a0 
= a1, b 
= 0, (egg collection effect and temporal
trend).

The second letter describes the existence of annual variation
in recruitment parameters:

A) εi 
= 0, (there are year effects on recruitment),
B) εi ≡ 0, (there are no year effects on recruitment).

The third letter describes the existence of annual variation in
survival parameters:

A) αi 
= 0, (there are year effects on survival),
B) αi ≡ 0, (there are no year effects on survival).
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Table 2
Deviance information criterion and index of model complexity (pD) for 16 models described in the text. Symbols “+”

and “−” indicate presence or absence of effect in the model.

Recruitment Annual variation Age effects on survival

Model pD DIC Trend Egg coll Recruit Survive β1 β2, β3, β4, β5 β6

CAAE 68.3 1732.7 + − + + − − −
CAAC 71.6 1739.0 + − + + + − −
CAAD 72.5 1755.6 + − + + − − +
CAAB 75.9 1775.4 + − + + + − +
CAAA 95.9 1817.4 + − + + + + +
DAAA 96.8 1817.8 + + + + + + +
AAAA 101.7 1823.7 − + + + + + +
BAAA 102.2 1827.0 − − + + + + +
CABA 56.9 1873.8 + − + − + + +
AABA 62.9 1881.2 − + + − + + +
BABA 63.3 1884.9 − − + − + + +
BBAA 62.1 1915.5 − − − + + + +
ABAA 62.7 1930.3 − + − + + + +
CBAA 48.7 1949.5 + − − + + + +
ABBA 24.0 1970.9 − + − − + + +
BBBA 23.2 1983.6 − − − − + + +

The fourth letter describes restrictions on the age effects on
survival:

A) no restrictions,
B) β2 = β3 = β4 = β5,
C) β2 = · · · = β6,
D) β1 = · · · = β5,
E) β1 = · · · = β6.

We used the deviance information criterion (DIC) (Spiegel-
halter et al., 2002) as a guide for comparing models. DIC con-
sists of a measure of fit, the posterior mean of the deviance

D(Parameters) = −2 loglikelihood(Parameters;Data)

plus a measure of model complexity, pD, described by
Spiegelhalter et al. (2002) as the “effective number of parame-
ters.” This latter quantity is calculated as the posterior mean
of D(·) minus the value of D calculated at the posterior mean
value of the parameters. The log likelihood used in these cal-
culations was based on the marginal distribution [B, W |θ].
Models with small values of DIC are favored on the grounds
of parsimony. Values are tabulated in Table 2.

7. Results and Discussion
For each model fitted, we generated 4 Markov chains of length
60000, discarding the first 10,000 values as a burn-in, and
approximating features of the posterior distributions using
the remaining 4 sets of 50,000 values. The Markov chains
exhibited good mixing, and only moderate autocorrelation.
Features of the posterior distributions are summarized in
Table 3; we denote the inverse of the logit transformation by
expit(x) = exp(x)/(1 + exp(x)).

We began by fitting models AAAA and BAAA, looking to
see whether there is any evidence on recruitment of an effect
due to egg collection. There having been no formal experiment
conducted, the “treatment” of egg collection not having been
applied to a random set of years, and the types and intensity

Table 3
Posterior means and standard deviations for age-specific

survival rates

Model ϕ·1 ϕ·2 ϕ·3 ϕ·4 ϕ·5 ϕ·6

CAAA 0.894 0.908 0.922 0.936 0.944 0.890
(0.023) (0.023) (0.024) (0.023) (0.023) (0.014)

CAAB 0.895 0.931 0.892
(0.023) (0.012) (0.014)

CAAC 0.900 0.910
(0.021) (0.010)

CAAD 0.922 0.892
(0.011) (0.014)

CAAE 0.910
(0.010)

of manipulation having varied through time, there can be no
unequivocal answer to the question of egg collection’s effects
on the population. The posterior probability that a1 < a0 un-
der model AAAA was 0.966, indicating that recruitment was
lower in egg-collection years, as has been suggested. However,
a plot of the posterior means of λi against time strongly sug-
gests a declining trend in recruitment (Figure 2), which could
reasonably be explained as a density-dependent effect related
to the increasing population size. The apparent difference in
parameters a0 and a1 could be an artifact of this trend. We
thus fit models CAAA and DAAA, allowing trend in recruit-
ment. Measured by DIC, both of these models fit better and
were less complex than either AAAA or BAAA. The effect of
egg collection under model DAAA was negligible (difference
of intercepts estimated as 0.033, with posterior standard devi-
ation 0.160). Thus, we favor models with trend in recruitment
but no effects due to egg collection.

The additional model complexity due to incorporating
yearly stochastic variation in recruitment rates was more
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Figure 2. Posterior means and 95% credible intervals for
per-breeder recruitment rates λi, plotted against year, with
egg-collection years in bold. Results are for model AAAA.

than offset by gains in fit; DIC values for AAAA, BAAA,
and CAAA were consistently smaller than those for ABAA,
BBAA, and CBAA. Similarly, we conclude that a better fit
is provided by including year effects on survival; DIC values
for AAAA, BAAA, and CAAA were consistently smaller than
those for AABA, BABA, and CABA. Figure 3 suggests that
there may be some pattern of increasing survival rates through
time.

Estimates of age-specific survival rates under models
CAAA, CAAB, CAAC, CAAD, and CAAE are given in
Table 3; the value ϕ·j is the average value of expit(α + βj)
over realizations of year effects α, sampled from a mean-
zero normal distribution with precision τα. The best fitting

1947 1957 1967 1977 1987 1997

1.00
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0.80

0.70

0.60

0.50

Figure 3. Posterior means and 95% credible intervals
for average survival rates ϕi·, plotted against years. Re-
sults are for model CAAA, with ϕi· = expit(αi + β·), with

β·=
1
6

∑6
j=1 βj .

Table 4
Estimates of parameters, other than age effects βj , under

models CAAA and CAAE (posterior means and 95% credible
intervals).

CAAA CAAE

Mean 95% CI Mean 95% CI

a −1.108 (−1.263, −0.961) −1.116 (−1.266, −0.971)
b −0.018 (−0.026, −0.010) −0.018 (−0.026, −0.010)

τ
−1/2
λ 0.366 (0.230, 0.524) 0.366 (0.231, 0.522)

τ
−1/2
α 0.680 (0.481, 0.916) 0.661 (0.462, 0.897)

Parameters a and b are intercept and slope in regression of
log(recruitment rate) on time (equation [5]); τ

−1/2
λ

and τ
−1/2
α are

standard deviations for year effects related to recruitment and survival.

model, based on DIC, is CAAE (Table 2), which assumes that
there is no age-specific variation in survival. The existence
of age-specific variation in survival seems likely on biological
grounds, and the pattern indicated by estimates under model
CAAA seems reasonable. We note that the credible intervals
for the age effects overlap, and suggest that the selection of
CAAE by DIC is thus an artifact of model selection on the ba-
sis of parsimony and the limited nature of the data analyzed.
We thus regard model CAAA as the most appropriate for
presentation. We note that posterior means and 95% credible
intervals for parameters other than βj ’s are nearly identical
under models CAAA and CAAE (Table 4).

While the survival and recruitment rates are of primary
interest in our analysis, it is worth noting that inference can
be made about the age distribution in any given year. Thus,
for instance, under model CAAA we may infer that, of the 161
white birds observed in the 2001 census, roughly 91 were in
age class 7. A summary of the posterior distributions for the
year 2001 age distribution is given in Table 5. The shortness
of the credible intervals for the numbers of individuals in age
classes (Yij) is a reflection, not only of the precision with
which the parametric model has been estimated, but also of
the substantial information provided by the age-structured
transition model.

To describe the survival function for individual birds, we
predicted lifetimes using the posterior distribution calculated
under model CAAA. Each lifetime is described by a sequence

Table 5
Posterior summaries for year 2001 age distribution: posterior
mode, credible interval (shortest interval containing at least

95% mass), and posterior probability of CI

Numbers of individuals in age class

Age class Mode CI Probability

1 15 [15, 15] 1
2 8 [7, 9] 0.991
3 14 [12, 16] 0.975
4 14 [12, 17] 0.974
5 21 [18, 24] 0.959
6 12 [9, 14] 0.966
7 91 [87, 97] 0.964
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of independent Bernoulli trials Sj , with parameters ϕ∗
j . These

are calculated as

ϕ∗
j = expit

(
α∗
j + βj

)
, for j = 1, 2, . . . , 6, and

ϕ∗
j = expit

(
α∗
j + β6

)
, for j = 7, 8, . . . ,

where α∗
j is sampled from a mean-zero normal distribution

with precision τα; the values βj and τα are sampled from
their joint posterior distribution. The lifetime X is the mini-
mum index j for which Sj = 0; since our analysis was condi-
tional on birds having reached age-class 1 (i.e., having success-
fully fledged and survived to the first winter), the inferences
we present are conditional on X ≥ 1. We reach the follow-
ing conclusions about the life distribution of individual birds,
conditional on their having been counted as brown juveniles:
43.7% die before reaching age-class 7, and 50.2% die before
reaching age 8; the 99th percentile is age 38.

We calculated a predictive distribution for the population
in year 2002 (i.e., the posterior distribution of Y65). Using the
posterior modes and 90% credible intervals, we predicted a
population size of 179 (158, 193) including 17 (9, 30) new
recruits.1

Our choice of a mean-zero normal distribution, with τβ =
0.40, for age-effects βj was motivated by three considerations.
First, the distribution of expit(βj) thus induced is nearly
uniform (quantiles 0.50, 0.60, 0.70, 0.80, 0.90, and 0.95 are
0.500, 0.599, 0.696, 0.791, 0.884, and 0.931, respectively).
Second, we found that our implementation of MCMC us-
ing the informative prior produced Markov chains of supe-
rior stability to those produced with τβ = 0. Finally, we note
that the posterior distributions of βj ’s were largely unaffected
by the choice of prior. Under model CAAE, with τβ = 0.40,
the posterior mean and standard deviation of β were 0.916
and 0.011, and the 95% credible interval was (0.899. 0.932).
With τβ = 0, the posterior mean and standard deviation of
β were 0.917 and 0.011, and the 95% credible interval was
(0.900, 0.933).

Our analysis can be summarized as follows: first, we de-
scribed the set of age distributions Yi, i = 1, 2, 3, . . . , n, as a
multivariate time series, conditioning on the counts of white
and brown birds in year 1, W1 and B1, and conditioning on
the demographic parameters of interest. Specification of prior
distributions for the demographic parameters leads to a Gibbs
sampling scheme for the joint posterior distribution of the de-
mographic parameters and the unobserved age distributions
Yi, given the annual counts of brown and white birds. The
precision with which we were able to estimate population pa-
rameters is due, in part, to the fact that we were working with
complete counts of the population. We envision the extension
of the techniques described here to incomplete counts, espe-
cially when auxiliary data are available for the estimation of
detection rates.
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Résumé

L’analyse démographique des populations structurées en âge
repose soit sur l’analyse d’histoires individuelles, soit lorsque
les animaux ne sont pas identifiés individuellement, sur une
information sur les nombres d’individus passant d’une classe
d’âge à une autre au cours du temps. S’il est la plupart du
temps difficile de déterminer l’âge exact d’un individu pris au
hasard, il est en revanche souvent possible d’assigner un indi-
vidu à une classe d’âges. Par exemple, il est souvent possible
de distinguer les oiseaux âgés d’un an des plus vieux. Dans ces
cas, la structure en âges de la population peut être considérée
comme une variable latente gouvernée par un processus a pri-
ori, et les données sont alors un résumé de cette structure
latente. Nous étudions ici le problème de la reconstitution de
la structure latente et de l’estimation des paramètres du pro-
cessus à partir de résumés d’information sur les classes d’âges.
Nous présentons une analyse démographique de la population
migrante de la grue américaine (Grus americana), actuelle-
ment en voie d’extinction, basée uniquement sur des comp-
tages des oiseaux d’un an et des oiseaux plus âgés. Nous es-
timons des taux de survie en fonction de l’âge et de l’année.
Nous apportons des éléments à la controverse sur l’impact de
la gestion des terrains de reproduction sur le taux de recrute-
ment, en reliant le taux de recrutement au nombre d’oiseaux
de sept ans et plus, et en analysant les variations au cours du
temps de ce taux.
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Appendix

Gibbs Sampling of the Population History
The process we used for sampling the population history is
best illustrated by example. From Table 1, we see that there
were 10 brown and 62 white birds in 1977, 7 brown and 68
white birds in 1978, and 6 brown and 70 white birds in 1979.
Since there were 72 birds alive in 1977, all of which would have
been white in 1978, had they survived, we can deduce that
there were 4 deaths. Generation of a candidate value for Yi

consists of randomly assigning those deaths to age classes; we
do so, subject to the constraint of consistency with the current
values of Yi−1 and Yi+1. Suppose that the current values of Yi−1

and Yi+1 are as given in Table A.1. Between 1977 and 1978,
there could have been 0, 1, or 2 deaths among the 10 age class
1 birds, but no more, since the number of age class 2 birds
in 1978 must be at least 8 for consistency with age class 3
in 1979. Similarly, we obtain upper bounds on the numbers
of 1977–1978 deaths in age classes 2, 3, and 4; these are 1,
0, and 0, respectively. The 43 birds in age classes 5, 6, and 7
in 1977 would all be in age class 7 in 1979, if they survived
twice; hence we obtain an upper bound of 43 − 37 = 6 for the
1977–1978 deaths in these 3 age classes. We note also that,

Table A.1
A set of age distributions consistent with the data

for 1977–1979. Bold values for 1978 are candidate value
generated consistently with values for 1977 and 1979, as

described in the Appendix

Age class

Year 1 2 3 4 5 6 7

1977 10 12 5 2 2 3 38
1978 7 9 12 5 2 1 39
1979 6 7 8 11 5 2 37

since the sum of the upper bounds for deaths in age classes
1 to 4 is only 3, and there were four total deaths, there must
have been at least 1 death in age classes 5 to 7.

The upper bounds on numbers of deaths for age classes 1,
2, 3, 4, and 5 through 7 are 2, 1, 0, 0, and 6 respectively. We
thus place two balls labeled “age class 1,” one labeled “age
class 2,” and six labeled “age classes 5 through 7” in an urn,
and draw 4 (the total number of deaths) at random without
replacement. Suppose that our draw yields one labeled “age
class 1” and three labeled “age classes 5 through 7.” The three
must be allocated to age classes 5 through 7, consistent with
the numbers for 1977. We thus place 2,3, and 38 balls labeled
“age class 5,” “age class 6,” and “age class 7” in a second
urn, and draw 3 at random without replacement. Suppose
that this second draw yields one ball labeled “age class 5” and
two labeled “age class 7”; we conclude that the numbers of
1977–1978 deaths in the 7 age classes were 1,0,0,0,1,0, and 2.
The candidate value for Yi is obtained by subtraction of these
deaths from the corresponding cells of Yi−1, it is highlighted
in Table 6.

The candidate-generating procedure is modified slightly for
several special cases. For i = n, the upper bounds on year
n − 1 deaths for the various age classes are simply the numbers
of individuals in the various age classes. For i = 1, given the
current value of Y2, we may determine how many of the 3
year-1 deaths were in age class 1, and randomly assign the
other deaths to the remaining age classes.

Finally, we note that, in certain years or blocks of years,
there were no deaths (1944–1946, 1948, 1952, 1974–1975); for
these years Di = (Wi + Bi) −Wi+1 = 0 (see Table 1). If there
were no deaths in year i, Yi+1 is completely determined by
Bi+1 and Yi. The algorithm we have described for producing
candidate values Yi requires consistency with current values
of Yi−1 and Yi+1, hence it cannot produce a candidate value
different from the current value when Di = 0. The solution
to this difficulty is to generate candidate values for groups of
years in a manner similar to that previously described for in-
dividual years. Thus, for instance, a candidate value for 1974
was generated consistent with the constraints imposed by cur-
rent values for 1973 and 1977, and used to determine the cor-
responding candidate values for 1975 and 1976.

The procedure we have described generates candidate val-
ues consistent with the range constraints imposed by the
model. The candidate value is then accepted or rejected with
probability given by equation (9).




